word2vec前世今生

2013年,Google开源了一款用于词向量计算的工具——word2vec,引起了工业界和学术界的关注。首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练;其次,该工具得到的训练结果——词向量(word embedding),可以很好地度量词与词之间的相似性。随着深度学习(Deep Learning)在自然语言处理中应用的普及,很多人误以为word2vec是一种深度学习算法。其实word2vec算法的背后是一个浅层神经网络。另外需要强调的一点是,word2vec是一个计算word vector的开源工具。当我们在说word2vec算法或模型的时候,其实指的是其背后用于计算word vector的CBoW模型和Skip-gram模型。很多人以为word2vec指的是一个算法或模型,这也是一种谬误。接下来,本文将从统计语言模型出发,尽可能详细地介绍word2vec工具背后的算法模型的来龙去脉。

Read more   2016/7/17 posted in  研究笔记-论文

AlphaGo原理解读

Read more   2016/5/16 posted in  研究笔记-论文

Nature Review: Deep Learning

如今,机器学习的技术在我们的生活中扮演着越来越重要的角色。从搜索引擎到推荐系统,从图像识别到语音识别。而这些应用都开始逐渐使用一类叫做深度学习(Deep Learning)的技术。

Read more   2016/5/14 posted in  研究笔记-论文